Biometric Systems

- Threats and Countermeasures
 - The State-of-the-Art

Colin Soutar, CTO, Bioscrypt Dale Setlak, CTO, Authentec

Overview

- General Biometric System Security
- Security of Biometric Templates
- Security Architecture
- Fake Finger Rejection
- Mutual Authentication

Biometric System and Security System Interface

Enrollment/Registration of Individual

- registration of a new user within security system
- administrator of the system determines the unique identity of the individual
- new user established
- a unique identifier is assigned to the user by which they are known to the security system
- individual instructed to enroll their biometric to create a biometric template
- template bound to the identifier, to create a user record

Verification/Authorization of User

- individual establishes a claim to the system
- user record is unbound to produce the template and identifier.
- individual is requested to verify
- if a successful match occurs, the identifier is relayed to the security system
- user is authorized, according to their security system rights and privileges

OMETRICE

Biometric Verification/User Authorization

User Credentials

- Link between user verification/system authorization
- Provides complex answer
- Individual can have a number of user credentials
- Prevents Identity Theft

User Record - Encryption

User Record – Encryption Prevents Identity Theft

User A Credentials

User B Biometric Template

User B Credentials

User B Biometric Template

Encryption of User Record

- Provides Confidentiality and Integrity of the biometric template
- Mitigates Identity Theft.

Unique Session Key

Mitigates replay attack

Use of User Credentials/Identifier

Mitigates attack on the biometric system result

Internally set threshold

Avoids threshold-based attacks

Security Evaluation - Common Criteria

- Established in 1998 to provide a mutually recognizable basis for the evaluation of IT security products.
- Designed to replace the existing National Body schemes for security evaluations.
- The Common Criteria comprises three components:
 - Common Evaluation Methodology
 - Protection Profile
 - Security Target

Other System Issues

- Controlled Enrollment/Registration
- User Record/Encryption
- Liveness detection
- Mutual Authentication between components

Overview / Contents

- Context of this discussion
- Interlocked component security architecture
- Real-biometric discrimination Anti-spoofing
- Mutual authentication between components

Context for this discussion

Assumptions

Platforms may not be secure

- Client Platform
- Use "Trusted Platform" resources if present
- Provide best reasonable trust levels when "TP" not present
- Networks may not be secure
- Components and their interfaces (SW & HW) can be made reasonably secure

Approach

- Balance the security of the ID system with the security of the rest of the system
- Use interlocked component security chains
 - To provide reasonably secure system-level functions
 - On unsecured platforms and networks

WithenTec A simplified architecture comparison

Some possible attack points

Context for this discussion

Assumptions

- Platforms may not be secure
 - Use "Trusted Platform" resources if present
 - Provide best reasonable trust levels when "TP" not present
- Networks may not be secure
- Components and their interfaces (SW & HW) can be made reasonably secure

Approach

- Balance the security of the ID system with the security of the rest of the system
- Use interlocked component security chains
 - To provide reasonably secure system-level functions
 - On unsecured platforms and networks

Interlocked component security architecture

- Security starts at the finger-to-sensor interface
 - Spoof detection mechanisms reject fake fingers
- Sensor uses a secure transaction protocol to authenticate each message
 - Uses an on-chip digital signature engine
- Code signing and authentication prevent Software tampering
- Multi-level template encryption and authentication prevent substitutions or insertions
- System level session security links users to privileges

Fake Finger Rejection

Definitions:

- Fake Finger Rejection = Ability to detect and reject artificial replicas of real fingers
- Fingerprint pattern data must be treated as publicly available

Importance:

- Not important in older criminology and background checking applications
 - Use of fake fingers is impractical where sensor use is heavily supervised
- Critical importance in emerging unsupervised applications
 - E-commerce, E-Banking, general password replacement
 - Personal portable device protection

uthenTec Biometric Anti-spoofing Approaches

Class 1. Generic properties of real biometric structures

Skin optical transparency

- Static properties
- Dynamic properties

Cardiac pulse

Class 2. Properties of the real biometric structure that are somewhat specific to the individual

User specific skin optical transparency

- Static properties
- Dynamic properties

Cardiac pressure profiles

- Class 3. Low-selectivity secondary biometric patterns of the structure
 - Static properties
 - Dynamic properties

Spectral or spatial pattern of skin optical transparency

Simultaneous Multi-biometric measurements

- Class 3 anti-spoofing
 - Utilize low-selectivity secondary biometric properties
- In fingerprint sensors, Measure multiple biometric properties of the finger
 - Fingerprint PLUS other properties
 - Characteristics of the best biometric properties:
 - Unrelated to friction ridge pattern (biometrically orthogonal)
 - Cannot be deduced from info in a latent fingerprint
 - Somewhat different from one person to the next
 - Reasonably uniform distribution across the population
 - Somewhat stable for a single finger over time
- Characteristics of the measurements
 - Measurements made simultaneously
 - Measure the same physical structure
 - Use colocated sensing devices

Sensor Secure Transaction Protocol

Protects against

- Threats to the "wire" between the sensor and the host computer
- Attacks on the I/O drivers or device drivers
- Including: record/replay, man-in-the-middle, device substitution, etc

Protocol overview

- The processor sends a new challenge word to the sensor before each image is captured
- The challenge word is used with codes internal to the sensor to produce an encryption key
- Each image is digitally signed using the image data and this encryption key
- Each image's signature is verified when that image is processed

Securing the software services

Objective

- Make the software and data as secure as practical
 - Within the limits of current commercial platforms
- Architecture must provide clean transition path
 - Provide reasonable security on existing platforms
 - Support TPM services where available
 - Support trusted platform
 - when infrastructure support becomes available

Example minimum stationary input device transactions

- Sensor key init
 - performed in secure environment
 - Either during:
 - ❖Mfg. init.
 - Sys Mgr config
 - Initial user enroll
- Trusted device is
 - Combo of periph. device + TPM
 - For remote usage, TPM rehashes and then signs data
 - Allows device key to remain local
 - Key mgmt with the remote server via TPM PKI

Session keys for stationary input device

Session key initialization

- Add a third transaction type for session key init
- performed every time device is powered up

Trusted device is

- Combo of peripheral device + TPM
- Session keys can be generated remotely and used for verification remotely (e.g. MS server)
- No rehashing by the TPM is required
- Key mgmt with server via TPM PKI

Authenticated data

Putting It All Together

Simultaneous Multi-biometric Anti-spoofing

Robust Trustworthy Identity Authentication

Sensor and System Security growth